Mercredi, 20 Janvier 2010; 8h - 11h Epreuve de Mathématiques. 3^{eme} séquence

Classe : $2^{nd}C$ Durée : 3h; coef : 6

L'épreuve comporte deux parties avec quatre exercices.

Activités Numériques (10pts)

Exercice 1 (5pts).

1. Déterminer le degré et le coefficient dominant des polynômes f et g suivants : $f(x) = (x^2 + 1)(3 - x^4) \text{ et } g(x) = (x - 2)(1 - x^2) - x(1 - x^2) + (x - 5)(2 - 3x).$ [1pt]

- 2. On donne: $h(x) = 10x^3 5x^2 + 7x 3$; $i(x) = x^5 5x^2 + 3$ et $j(x) = 7x^3 3x^2 + 2x$ déterminer A(x) = h(x) + i(x) + j(x) et B(x) = -h(x) + 2i(x) j(x). [1pt]
- 3. Factoriser: u(x) = (2x+1)(x-3) (4x+5)(3-x) et $v(x) = x^3 + 27 (x+3)(2x^2 5x + 6)$. [1,5pts]
- 4. Etudier suivant les valeurs de x, le signe de $w(x) = -4(5x-7)(x\sqrt{3}-5)$. [1pt] et en déduire le signe de $w(2010+\frac{\sqrt{11}}{\sqrt{3}})$ et $w(\sqrt{2})$. [0,5pt]

Exercice 2 (5pts).

A- On donne: $q(x) = 2x^2 - 5x + 2$; $p(x) = -2x^3 - x^2 + 13x - 6$ et $Q(x) = \frac{-2x^3 - x^2 + 13x - 6}{(2x - 1)(x - 2)}$.

- 1. Mettre q(x) sous la forme canonique et endéduire sa factorisation. [0,5pt]
- 2. Calculer p(-3) et conclure. [0,5pt]
- 3. Factoriser p(x). [1pt]
- 4. Résoudre l'équation p(x) = 0. [0,5pt]
- 5. Simplifier Q(x). [0,5pt]
- 6. Etudier le signe de Q(x) et en déduire l'ensemble solution de l'inéquation $Q(x) \leq 0$. [1pt]

 $B-\;$ Déterminer les nombres réels a et b tels que, pour tout nombre réel de $\mathbb{R}\setminus\{-2;2\},$ on ait :

$$\frac{1}{x^2 - 4} = \frac{a}{x - 2} + \frac{b}{x + 2}$$

[1pt]

Année scolaire : 2009/2010

Activités Géométriques (10pts)

Exercice 3 (3,5pts).

ABCD est un parallélogramme. Les points I et J sont des milie ux respectifs des segments [AB] et [CD].

- 1. Démontrer que les droites (ID) et (JB) sont parallèles. [0,5pt]
- 2. Contruire les points M et N tels que $:\overrightarrow{AM} = \frac{1}{3}\overrightarrow{AC}$ et $\overrightarrow{AN} = \frac{2}{3}\overrightarrow{AC}$ [0,5pt]
 - (a) Démontrer que M, I et D sont alignés. [0,5pt]
 - (b) Démontrer que N, J et B sont alignés. [0,5pt]
- 3. Montrer que le quadrilatère MINJ est un parallélogramme. [0,5pt]
- 4. E est le point d'intersection des droites (ID) et (BC).
 - (a) Calculer $\overrightarrow{CB} + \overrightarrow{EB}$. [0,5pt]
 - (b) Que peut-on dire du point B par rapport au segment [CE]? [0,5pt]

Exercice 4 (6.5pts).

La figure ci-contre est l'esquisse du parallélogramme quadrillé ABCD. On ne demande pas de reproduire cette figure sur sa feuille.

- 1. Placer les points I J K et L tels que : $\overrightarrow{DI} = \frac{2}{5}\overrightarrow{DC}$; $\overrightarrow{AJ} = -\frac{1}{3}\overrightarrow{DA}$; $\overrightarrow{BK} = -\frac{2}{5}\overrightarrow{AB}$ et $\overrightarrow{CL} = \frac{1}{3}\overrightarrow{CB}$. [2pts]
- 2. On pose $\overrightarrow{AO} = \frac{1}{5}\overrightarrow{AB}$. Dans la suite du problème, on considère le repère $(A, \overrightarrow{AJ}, \overrightarrow{AO})$.
 - (a) Ce repère est-il orthonormé? Pourquoi? [0,75pt]
 - (b) Donner dans ce repère les coordonnées des points I, J, K et L. [1pt]
 - (c) En déduire les coordonnées des vecteurs \overrightarrow{JK} et \overrightarrow{LI} . En déduire la nature du quadrilatère IJKL.
 - (d) Donner les coordonnées du centre G du parallélogramme IJKL. G est-il le centre de gravité de IJKL? [0,75pt]
- 3. (a) Donner les coordonnées des centres de gravités des triangle $IBC(\text{not\'e}\ S)$ et KAD (not\'e T).
 - (b) Montrer que G, S et T sont alignés. [0,5pt]