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Answer ALL questions. 
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stage. 
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1. Using the definition tanh
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a) show that , for 1x  , 1 1 1
tanh ln
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4 marks  

b) Hence, or otherwise, show that  1
2

1
tanh

1

d
x

dx x
 

      
               3 marks  

 

2.  (i)   Sketch, using the same axes, the curves .  

   Shade the region for which  .         4 marks 

(ii) Solve the differential equation , given that when x = 0     4 marks 

 

3. (i)  The arc of a curve with equation coshy x , between the points where 
9

0  ln
4

x and x
    
 

, is rotated through 2  

radians about the x axis . Show that the surface area generated is 
9

ln
4

p        
, where p is a number to be 

determined              5 marks 

(ii) Sketch the graph of the function   2 4 3f x x    

    Hence, find the solution of the inequality 2 4 2x            4 marks 

 

4. (i)  The Cartesian equation of the curve C is  

 
1

2 2 2 2 22x y x x y     

a) Find the polar equation of the curve for               2 marks 
b) Find the equations of the tangents to the curve at the Pole        2 marks 
c) Sketch the curve C.             2 marks 

(ii) Given that  
22 3 3 7 2

2 2
x x x x

e f x
x x

   
  

 
, find  lim

x
f x


        3 marks 

 

5.  (i)  When the number 900 is divided by another numberb , it gives a quotient 14 and a remainder r . 
a) Write down the relationship between 900, 14, b and r,            1 mark 
b) What are the possible values of b and r                       5 marks 

  
(ii) A linear transformation, T, maps the points (1, 1) onto the point (2, - 3) and the point (0, 1) on to (1, 2) . 

   Find 
a

T
b

 
 
 

and hence 
3

19
T
 
  

            4 marks 

 

322  and 4 xyxy 

   04 322  xyxy
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6. (i)   Find the equation of the tangent and normal of the parabola 2 8x y at the point  24 , 2t t . The tangent meets the x     

axis at A and the y axis at B.  

a) Find the coordinates of the mid-point M of AB           4marks 
b) Hence find the locus of M as t varies.           3 marks 

 

(ii) If  ln
n

nI x dx  , show that 1ln , 1n nI x x nI n    

Hence find 3I               4 marks 

 

7. (i)   Prove that  ,  is a group where  is defined by 1a b a b           3 marks 

(ii) Define a map from    ,   ,to    by   ln ,  f x x where   , is the set of positive non-zero real numbers. 

a) Show that f is a homomorphism.           3 marks 

b) Show, also that, f is an isomorphism.           3 marks 

 

8. (i)   Determine the   Imkelf and f in the linear transformation 

   

2 2:

    , 2 ,

f

x y x x y



 

 


            5 marks 

(ii)  Given that  
1

,   
2

iz
e where

z
 




is real, prove that 
1

3 cot
2 2

z i
        

      4 marks 

 

 

9. A function f  , is defined by 

                 
11
,     0

2
0,     0

xxe if x
f x

if x


 

 

 

a) State the domain of f                                       1 mark 

b) Show that f is not continuous at the point where 0x                      2 marks 

c) Study the differentiability of f and state its sign in the domain                                3 marks 

d) Find    lim   lim
x x

f x and f x
 

           3 marks   

e) State the asymptote of f                           1 mark 

f) Establish a variation table for f                        2 marks 

g) Interpret your results graphically.                       2 marks 
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10. Consider the sequence  nu  given  by 
0 1

2 1

1
1,   

2
1
4n n n

u u

u u u 

    

   

a) By letting and  nw be two other sequences defined by 1
1
2n n nv u u   and n

n
n

u
w

v
  

i. Calculate 0v and 0w                                                                                                                              2 marks 

ii. Show that the sequence  nv   is a geometric progression with common ratio 1
2

r  .                            2 marks     

iii. Express nv  in terms of n   and hence evaluate lim n
n

v


                                                 2 marks                              

iv. Show that 1 2n nw w     and then characterize the sequence  nw                                                        2 marks    

v. Express nw in terms of n .                                                                                                        2 marks                                              

b) Show that n   , we have 2 1

2
n n

n
u

                                                                                        2 marks    

c) Let
0

n

n k
k

S u


 . Prove by mathematical induction that n   2 2
2

2
n n

n
S

   by mathematical induction.               

3 marks 
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