Pays: Togo **Année**: 2017 **Épreuve**: Mathématiques

Examen: BAC, Série A4 **Durée**: 2 h **Coefficient**: 1

EXERCICE 1 (5 points)

1. Résoudre dans l'ensemble des nombres réels l'équation : $X^2 - 4X - 5 = 0$.

2. En déduire la résolution dans l'ensemble des nombres réels, des équations suivantes :

a)
$$(\ln x)^2 - 4 \ln x - 5 = 0$$
.

b)
$$ln(x-3) + ln(x-1) = ln8$$
.

c)
$$e^x - 4 = 5e^{-x}$$
.

EXERCICE 2 (5 points)

Une boîte contient 10 objets : n objets sont noirs (avec $2 \le n \le 8$), les autres sont blancs. On extrait simultanément deux objets de la boîte. On suppose les tirages équiprobables.

1. Déterminer le nombre de tirages possibles.

2. Déterminer les probabilités respectives d'obtenir :

- a) deux objets de couleurs différentes.
- b) deux objets noirs.

3. a) Montrer que la probabilité d'obtenir deux objets blancs est $\frac{(10-n)(9-n)}{90}$.

b) Déterminer n pour que la probabilité de tirer deux objets blancs soit égale à $\frac{7}{15}$.

PROBLÈME (10 points)

Soit la fonction f définie sur \mathbb{R} par : $f(x) = ax + b - e^x$, où a et b sont des nombres réels. Soit (O, \vec{i}, \vec{j}) un repère orthonormé d'unité graphique 2 cm.

1. Déterminer la fonction dérivée f' de f.

- **2.** Déterminer les réels *a* et *b* de façon que la courbe admette l'axe des abscisses comme tangente en O.
- **3.** On suppose dans la suite que : $f(x) = x + 1 e^x$.
 - a) Calculer la limite de f en $-\infty$.
 - b) Montrer que pour tout réel x non nul, $f(x) = x(1 + \frac{1}{x} \frac{e^x}{x})$, puis en déduire la limite de f en $+\infty$.
 - c) Calculer la dérivée f' de f puis étudier le signe de f'(x) pour x élément de \mathbb{R} .
 - d) Dresser le tableau de variation de f.
- **4.** Montrer que la droite (D) d'équation y = x + 1 est asymptote oblique à la courbe C_f de f en $-\infty$.
- **5.** Tracer la droite (*D*) et la courbe C_f dans le repère (O, \vec{i} , \vec{j}).